
UNIT II

DATA, EXPRESSIONS, STATEMENTS

Python interpreter and interactive mode; values and types: int, float, boolean, string,
and list; variables, expressions, statements, tuple assignment, precedence of operators,
comments; Modules and functions, function definition and use, flow of execution,
parameters and arguments; Illustrative programs: exchange the values of two
variables, circulate the values of n variables, distance between two points.

1. INTRODUCTION TO PYTHON:

Python is a general-purpose interpreted, interactive, object-oriented, and high-
level programming language.
It was created by Guido van Rossum during 1985- 1990.

Python got its name from “Monty Python’s flying circus”. Python was released in the
year 2000.

 Python is interpreted: Python is processed at runtime by the interpreter. You
do not need to compile your program before executing it.

 Python is Interactive: You can actually sit at a Python prompt and interact with
the interpreter directly to write your programs.

 Python is Object-Oriented: Python supports Object-Oriented style or technique
of programming that encapsulates code within objects.

 Python is a Beginner's Language: Python is a great language for the beginner-

level programmers and supports the development of a wide range of
applications.

Easy-to-learn:Python is clearly defined and easily readable. The structure of
the program is very simple. It uses few keywords.

 Easy-to-maintain: Python's source code is fairly easy-to-maintain.

 Portable: Python can run on a wide variety of hardware platforms and has the
same interface on all platforms.

 Interpreted: Python is processed at runtime by the interpreter. So, there is no
need to compile a program before executing it. You can simply run the program.

 Extensible: Programmers can embed python within their C,C++,Java script
,ActiveX, etc.

 Free and Open Source: Anyone can freely distribute it, read the source code, and
edit it.

 High Level Language: When writing programs, programmers concentrate on
solutions of the current problem, no need to worry about the low level details.

 Scalable: Python provides a better structure and support for large programs
than shell scripting.

 Bit Torrent file sharing

 Google search engine, Youtube
 Intel, Cisco, HP, IBM
 i–Robot

 NASA

1 Unit 2: Data ,expressions, Statements

 Facebook, Drop box

1.3. Python interpreter:

Interpreter: To execute a program in a high-level language by translating it one line at
a time.

Compiler: To translate a program written in a high-level language into a low-level
language all at once, in preparation for later execution.

 Compiler Interpreter

Compiler Takes Entire program as input

 Interpreter Takes Single instruction as

 input

Intermediate Object Code is Generated

 No Intermediate Object Code

 is Generated

 Conditional Control Statements are Conditional Control Statements are

 Executes faster Executes slower

 Memory Requirement is More(Since Object Memory Requirement is Less

 Code is Generated)

Program need not be compiled every time

 Every time higher level program is

 converted into lower level program

 Errors are displayed after entire Errors are displayed for every

 program is checked instruction interpreted (if any)

 Example : C Compiler Example : PYTHON

1.4 MODES OF PYTHON INTERPRETER:

Python Interpreter is a program that reads and executes Python code. It uses 2 modes
of Execution.

1. Interactive mode
2. Script mode

Interactive mode:
 Interactive Mode, as the name suggests, allows us to interact with OS.

 When we type Python statement, interpreter displays the result(s)
immediately.

Advantages:

 Python, in interactive mode, is good enough to learn, experiment or explore.

 Working in interactive mode is convenient for beginners and for testing small
pieces of code.

Drawback:

 We cannot save the statements and have to retype all the statements once again to
re-run them.

In interactive mode, you type Python programs and the interpreter displays the result:
>>> 1 + 1
2
The chevron, >>>, is the prompt the interpreter uses to indicate that it is ready for you
to enter code. If you type 1 + 1, the interpreter replies 2.
>>> print ('Hello, World!')
Hello, World!

2 Unit 2: Data ,expressions, Statements

This is an example of a print statement. It displays a result on the screen. In this case,
the result is the words.

Script mode:

 In script mode, we type python program in a file and then use interpreter to
execute the content of the file.

 Scripts can be saved to disk for future use. Python scripts have the extension
.py, meaning that the filename ends with .py

 Save the code with filename.py and run the interpreter in script mode to execute
the script.

 Interactive mode Script mode

A way of using the Python interpreter by A way of using the Python interpreter to

typing commands and expressions at the read and execute statements in a script.
prompt.

Cant save and edit the code Can save and edit the code

If we want to experiment with the code, If we are very clear about the code, we can

we can use interactive mode. use script mode.
we cannot save the statements for further we can save the statements for further use

use and we have to retype and we no need to retype

all the statements to re-run them. all the statements to re-run them.
We can see the results immediately. We cant see the code immediately.

Integrated Development Learning Environment (IDLE):

 Is a graphical user interface which is completely written in Python.

 It is bundled with the default implementation of the python language and also
comes with optional part of the Python packaging.

Features of IDLE:

 Multi-window text editor with syntax highlighting.

3 Unit 2: Data ,expressions, Statements

https://en.wikipedia.org/wiki/Syntax_highlighting

 Auto completion with smart indentation.
 Python shell to display output with syntax highlighting.

2.VALUES AND DATA TYPES

Value:

Value can be any letter ,number or string.

Eg, Values are 2, 42.0, and 'Hello, World!'. (These values belong to different
datatypes.)

Data type:

Every value in Python has a data type.
It is a set of values, and the allowable operations on those values.

Python has four standard data types:

2.1Numbers:

 Number data type stores Numerical Values.

 This data type is immutable [i.e. values/items cannot be changed].

 Python supports integers, floating point numbers and complex numbers. They
are defined as,

2.2 Sequence:

 A sequence is an ordered collection of items, indexed by positive integers.

 It is a combination of mutable (value can be changed) and immutable (values
cannot be changed) data types.

4 Unit 2: Data ,expressions, Statements

 There are three types of sequence data type available in Python, they are
1. Strings
2. Lists
3. Tuples

 A String in Python consists of a series or sequence of characters - letters,
numbers, and special characters.

 Strings are marked by quotes:

 single quotes (' ') Eg, 'This a string in single quotes'
 double quotes (" ") Eg, "'This a string in double quotes'"

 triple quotes(""" """) Eg, This is a paragraph. It is made up of multiple
lines and sentences."""

 Individual character in a string is accessed using a subscript (index).

 Characters can be accessed using indexing and slicing operations

Strings are immutable i.e. the contents of the string cannot be changed after it is
created.

Indexing:

 Positive indexing helps in accessing the string from the beginning
 Negative subscript helps in accessing the string from the end.
 Subscript 0 or –ve n(where n is length of the string) displays the first element.

Example: A[0] or A[-5] will display “H”
 Subscript 1 or –ve (n-1) displays the second element.

i. Indexing
ii. Slicing

iii. Concatenation
iv. Repetitions
v. Member ship

Creating a string >>> s="good morning" Creating the list with elements of

 different data types.
Indexing >>> print(s[2]) Accessing the item in the

 o position 0

 >>> print(s[6]) Accessing the item in the

 O position 2

Slicing(ending >>> print(s[2:]) - Displaying items from 2nd till
position -1) od morning last.

5 Unit 2: Data ,expressions, Statements

 Slice operator is >>> print(s[:4]) - Displaying items from 1st

 used to extract Good position till 3rd .

 part of a data

 type

 Concatenation >>>print(s+"friends") -Adding and printing the

 good morningfriends characters of two strings.

 Repetition >>>print(s*2) Creates new strings,

 good morninggood concatenating multiple copies of

 morning the same string

 in, not in >>> s="good morning" Using membership operators to

 (membership >>>"m" in s check a particular character is in

 operator) True string or not. Returns true if

 >>> "a" not in s present.

 True

2.2.2 Lists

 List is an ordered sequence of items. Values in the list are called elements / items.

 It can be written as a list of comma-separated items (values) between square
brackets[].

 Items in the lists can be of different data types.

Operations on list:
Indexing

Slicing

Concatenation

Repetitions

Updation, Insertion, Deletion

 Creating a list >>>list1=["python", 7.79, 101, Creating the list with

 "hello”] elements of different data

 >>>list2=["god",6.78,9] types.

 Indexing >>>print(list1[0])  Accessing the item in

 python the position 0

 >>> list1[2]  Accessing the item in

101

 the position 2

 Slicing(ending >>> print(list1[1:3]) - Displaying items from 1st

 position -1) [7.79, 101] till 2nd.

 Slice operator is >>>print(list1[1:]) - Displaying items from 1st

 used to extract [7.79, 101, 'hello'] position till last.

 part of a string, or

 some part of a list

 Python

 Concatenation >>>print(list1+list2) -Adding and printing the

 ['python', 7.79, 101, 'hello', 'god', items of two lists.

6 Unit 2: Data ,expressions, Statements

 6.78, 9]

 Repetition >>> list2*3 Creates new strings,
 ['god', 6.78, 9, 'god', 6.78, 9, 'god', concatenating multiple

 6.78, 9] copies of the same string

 Updating the list >>> list1[2]=45 Updating the list using index

 >>>print(list1) value

 [‘python’, 7.79, 45, ‘hello’]

 Inserting an >>> list1.insert(2,"program") Inserting an element in 2nd

 element >>> print(list1) position

 ['python', 7.79, 'program', 45,

 'hello']

 Removing an >>> list1.remove(45) Removing an element by

 element >>> print(list1) giving the element directly

 ['python', 7.79, 'program', 'hello']

2.2.4Tuple:

 A tuple is same as list, except that the set of elements is enclosed in parentheses
instead of square brackets.

 A tuple is an immutable list. i.e. once a tuple has been created, you can't add
elements to a tuple or remove elements from the tuple.

 Benefit of Tuple:

 Tuples are faster than lists.
 If the user wants to protect the data from accidental changes, tuple can be used.
 Tuples can be used as keys in dictionaries, while lists can't.



Basic Operations:
Creating a tuple >>>t=("python", 7.79, 101, Creating the tuple with elements

 "hello”) of different data types.

Indexing >>>print(t[0])  Accessing the item in the

 python position 0

 >>> t[2]  Accessing the item in the

101

 position 2

Slicing(ending >>>print(t[1:3])  Displaying items from 1st

position -1) (7.79, 101) till 2nd.

Concatenation >>> t+("ram", 67)  Adding tuple elements at

 ('python', 7.79, 101, 'hello', 'ram', the end of another tuple

 67) elements

Repetition >>>print(t*2)  Creates new strings,

 ('python', 7.79, 101, 'hello', concatenating multiple copies of

 'python', 7.79, 101, 'hello') the same string

Altering the tuple data type leads to error. Following error occurs when user tries to
do.

7 Unit 2: Data ,expressions, Statements

>>> t[0]="a"

Trace back (most recent call last):

File "<stdin>", line 1, in <module>

Type Error: 'tuple' object does not support item

assignment

2.3 Mapping

-This data type is unordered and mutable.

-Dictionaries fall under Mappings.
2.3.1Dictionaries:

 Lists are ordered sets of objects, whereas dictionaries are unordered sets.

 Dictionary is created by using curly brackets. i,e. {}
 Dictionaries are accessed via keys and not via their position.

 A dictionary is an associative array (also known as hashes). Any key of the
dictionary is associated (or mapped) to a value.

 The values of a dictionary can be any Python data type. So dictionaries are

unordered key-value-pairs(The association of a key and a value is called a key-
value pair)

Dictionaries don't support the sequence operation of the sequence data types like
strings, tuples and lists.

Creating a >>> food = {"ham":"yes", "egg" : Creating the dictionary with

dictionary "yes", "rate":450 } elements of different data

 >>>print(food) types.

 {'rate': 450, 'egg': 'yes', 'ham':

 'yes'}

Indexing >>>> print(food["rate"]) Accessing the item with keys.
 450

Slicing(ending >>>print(t[1:3]) Displaying items from 1st till
position -1) (7.79, 101) 2nd.

If you try to access a key which doesn't exist, you will get an error message:

>>> words = {"house" : "Haus", "cat":"Katze"}
>>> words["car"]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

KeyError: 'car'

 Data type Compile time Run time

 int a=10 a=int(input(“enter a”))

 float a=10.5 a=float(input(“enter a”))

 string a=”panimalar” a=input(“enter a string”)

 list a=[20,30,40,50] a=list(input(“enter a list”))

 tuple a=(20,30,40,50) a=tuple(input(“enter a tuple”))

8 Unit 2: Data ,expressions, Statements

3.Variables,Keywords Expressions, Statements, Comments, Docstring ,Lines And
Indentation, Quotation In Python, Tuple Assignment:

3.1VARIABLES:

 A variable allows us to store a value by assigning it to a name, which can be used
later.

 Named memory locations to store values.

 Programmers generally choose names for their variables that are meaningful.
 It can be of any length. No space is allowed.

 We don't need to declare a variable before using it. In Python, we simply assign a
value to a variable and it will exist.

Assigning value to variable:

Value should be given on the right side of assignment operator(=) and variable on left
side.

>>>counter =45

print(counter)

Assigning a single value to several variables simultaneously:

>>> a=b=c=100

Assigning multiple values to multiple variables:

>>> a,b,c=2,4,"ram"

3.2KEYWORDS:

 Keywords are the reserved words in Python.

 We cannot use a keyword as variable name, function name or any other
identifier.

 They are used to define the syntax and structure of the Python language.

 Keywords are case sensitive.































3.3IDENTIFIERS:


Identifier is the name given to entities like class, functions, variables etc. in
Python. 

 Identifiers can be a combination of letters in lowercase (a to z) or uppercase (A
to Z) or digits (0 to 9) or an underscore (_).



9 Unit 2: Data ,expressions, Statements

https://www.programiz.com/python-programming/variables-datatypes
https://www.programiz.com/python-programming/variables-datatypes

 all are valid example.
 An identifier cannot start with a digit.

 Keywords cannot be used as identifiers.
 Cannot use special symbols like !, @, #, $, % etc. in our identifier.

 Identifier can be of any length.
Example:

Names like myClass, var_1, and this_is_a_long_variable

 Valid declarations Invalid declarations

Num Number 1

Num num 1

Num1 addition of program

_NUM 1Num

NUM_temp2 Num.no

IF if

Else else

3.4 STATEMENTS AND EXPRESSIONS:

3.4.1 Statements:
-Instructions that a Python interpreter can executes are called statements.
-A statement is a unit of code like creating a variable or displaying a value.

>>> n = 17
>>> print(n)

Here, The first line is an assignment statement that gives a value to n.

The second line is a print statement that displays the value of n.
3.4.2Expressions:

-An expression is a combination of values, variables, and operators.

- A value all by itself is considered an expression, and also a variable.
- So the following are all legal expressions:

>>> 42
42
>>> a=2
>>> a+3+2
7
>>> z=("hi"+"friend")
>>> print(z)

hifriend

3.5 INPUT AND OUTPUT

INPUT: Input is data entered by user (end user) in the program.
In python, input () function is available for input.

Syntax for input() is:

variable = input (“data”)

10 Unit 2: Data ,expressions, Statements

Example:

>>> x=input("enter the name:")
enter the name: george

>>>y=int(input("enter the number"))

enter the number 3

#python accepts string as default data type. conversion is required for type.

OUTPUT: Output can be displayed to the user using Print statement .

Syntax:

print (expression/constant/variable)

Example:

>>> print
("Hello") Hello

3.6 COMMENTS:

 A hash sign (#) is the beginning of a comment.
 Anything written after # in a line is ignored by interpreter.

Eg:percentage = (minute * 100) / 60 # calculating percentage of an hour

 Python does not have multiple-line commenting feature. You have to

comment each line individually as follows :
Example:

This is a comment.
This is a comment, too.
I said that already.

3.7 DOCSTRING:

 Docstring is short for documentation string.

 It is a string that occurs as the first statement in a module, function, class, or
method definition. We must write what a function/class does in the docstring.

 Triple quotes are used while writing docstrings.

Syntax:

functionname__doc.__

Example:

def double(num):
"""Function to double the value"""

return 2*num

>>> print(double.__doc__)

Function to double the value

3.8 LINES AND INDENTATION:

 Most of the programming languages like C, C++, Java use braces { } to define a
block of code. But, python uses indentation.

 Blocks of code are denoted by line indentation.

 It is a space given to the block of codes for class and function definitions or flow
control.

11 Unit 2: Data ,expressions, Statements

Example:

a=3

b=1

if a>b:

print("a is greater")

else:

print("b is greater")

3.9 QUOTATION IN PYTHON:

Python accepts single ('), double (") and triple (''' or """) quotes to denote string literals.

Anything that is represented using quotations are considered as string.

single quotes (' ') Eg, 'This a string in single quotes'
double quotes (" ") Eg, "'This a string in double quotes'"

triple quotes(""" """) Eg, This is a paragraph. It is made up of multiple lines

and sentences."""

3.10 TUPLE ASSIGNMENT

 An assignment to all of the elements in a tuple using a single assignment
statement.

 Python has a very powerful tuple assignment feature that allows a tuple of
variables on the left of an assignment to be assigned values from a tuple on the
right of the assignment.

 The left side is a tuple of variables; the right side is a tuple of values.
 Each value is assigned to its respective variable.

 All the expressions on the right side are evaluated before any of the assignments.
This feature makes tuple assignment quite versatile.

 Naturally, the number of variables on the left and the number of values on the
right have to be the same.

>>> (a, b, c, d) = (1, 2, 3)

ValueError: need more than 3 values to unpack

Example:

-It is useful to swap the values of two variables. With conventional assignment
statements, we have to use a temporary variable. For example, to swap a and b:

 Swap two numbers Output:

 a=2;b=3

 print(a,b) (2, 3)

 temp = a (3, 2)

 a = b >>>

 b = temp

 print(a,b)

12

Unit 2: Data ,expressions, Statements

-Tuple assignment solves this problem neatly:

(a, b) = (b, a)

-One way to think of tuple assignment is as tuple packing/unpacking.

In tuple packing, the values on the left are ‘packed’ together in a tuple:

>>> b = ("George", 25, "20000") # tuple packing

-In tuple unpacking, the values in a tuple on the right are ‘unpacked’ into the
variables/names on the right:

>>> b = ("George", 25, "20000") # tuple packing >>>
(name, age, salary) = b # tuple unpacking

>>> name
'George'
>>> age
25
>>> salary
'20000'

-The right side can be any kind of sequence (string,list,tuple)

Example:

-To split an email address in to user name and a domain

>>> mailid='god@abc.org'
>>> name,domain=mailid.split('@')
>>> print name
god

>>> print
(domain) abc.org

4.OPERATORS:

 Operators are the constructs which can manipulate the value of operands.

 Consider the expression 4 + 5 = 9. Here, 4 and 5 are called operands and + is
called operator

 Types of Operators:
-Python language supports the following types of operators

 Arithmetic Operators
 Comparison (Relational) Operators
 Assignment Operators
 Logical Operators
 Bitwise Operators
 Membership Operators
 Identity Operators

13 Unit 2: Data ,expressions, Statements

4.1 Arithmetic operators:

They are used to perform mathematical operations like addition, subtraction,
multiplication etc. Assume, a=10 and b=5

 Operator Description Example

 + Addition Adds values on either side of the operator. a + b = 30

 - Subtraction Subtracts right hand operand from left hand a – b = -10

 operand.

* Multiplies values on either side of the operator a * b = 200

 Multiplication

 / Division Divides left hand operand by right hand operand b / a = 2

 % Modulus Divides left hand operand by right hand operand b % a = 0

 and returns remainder

 ** Exponent Performs exponential (power) calculation on a**b =10 to the

 operators power 20

// Floor Division - The division of operands where the 5//2=2

 result is the quotient in which the digits after the

 decimal point are removed

 Examples Output:

 a=10 a+b= 15

 b=5 a-b= 5

 print("a+b=",a+b) a*b= 50

 print("a-b=",a-b) a/b= 2.0

 print("a*b=",a*b) a%b= 0

 print("a/b=",a/b) a//b= 2

 print("a%b=",a%b) a**b= 100000

 print("a//b=",a//b)

 print("a**b=",a**b)

4.2 Comparison (Relational) Operators:

 Comparison operators are used to compare values.
 It either returns True or False according to the condition. Assume, a=10 and b=5

 Operator Description Example

== If the values of two operands are equal, then the condition (a == b) is

14

Unit 2: Data ,expressions, Statements

 becomes true. not true.

!= If values of two operands are not equal, then condition (a!=b) is

 becomes true. true

> If the value of left operand is greater than the value of right (a > b) is

 operand, then condition becomes true. not true.

< If the value of left operand is less than the value of right (a < b) is

 operand, then condition becomes true. true.

>= If the value of left operand is greater than or equal to the (a >= b) is

 value of right operand, then condition becomes true. not true.

<= If the value of left operand is less than or equal to the value (a <= b) is

 of right operand, then condition becomes true. true.

Example

a=10 Output:

b=5 a>b=> True

print("a>b=>",a>b) a>b=> False

print("a>b=>",a<b) a==b=> False

print("a==b=>",a==b) a!=b=> True

print("a!=b=>",a!=b) a>=b=> False

print("a>=b=>",a<=b) a>=b=> True

print("a>=b=>",a>=b)

4.3 Assignment Operators:

-Assignment operators are used in Python to assign values to variables.

 Operator Description Example

= Assigns values from right side operands to left side c = a + b

 operand assigns

 value of a +

 b into c

 += Add AND It adds right operand to the left operand and assign c += a is

 the result to left operand equivalent

 to c = c + a

-= Subtract It subtracts right operand from the left operand and c -= a is

 AND assign the result to left operand equivalent

 to c = c - a

15

Unit 2: Data ,expressions, Statements

*= Multiply It multiplies right operand with the left operand and c *= a is

AND assign the result to left operand equivalent

 to c = c * a

/= Divide It divides left operand with the right operand and c /= a is

AND assign the result to left operand equivalent

 to c = c / ac

 /= a is

 equivalent

 to c = c / a

%= Modulus It takes modulus using two operands and assign the c %= a is

AND result to left operand equivalent

 to c = c % a

**= Exponent Performs exponential (power) calculation on c **= a is

AND operators and assign value to the left operand equivalent

 to c = c ** a

//= Floor It performs floor division on operators and assign c //= a is

Division value to the left operand equivalent

 to c = c // a

Example

a = 21

b = 10

c = 0

c = a + b

print("Line 1 - Value of c is ", c)

c += a

print("Line 2 - Value of c is ", c)

c *= a

print("Line 3 - Value of c is ", c)

c /= a

print("Line 4 - Value of c is ", c)

c = 2
c %= a
print("Line 5 - Value of c is ",
c) c **= a
print("Line 6 - Value of c is ",
c) c //= a
print("Line 7 - Value of c is ", c)

Output

Line 1 - Value of c is 31

Line 2 - Value of c is 52

Line 3 - Value of c is 1092

Line 4 - Value of c is 52.0

Line 5 - Value of c is 2

Line 6 - Value of c is 2097152
Line 7 - Value of c is 99864

16 Unit 2: Data ,expressions, Statements

4.4 Logical Operators:

-Logical operators are the and, or, not operators.

Example Output

a = True x and y is False

b = False x or y is True

print('a and b is',a and b) not x is False

print('a or b is',a or b)

print('not a is',not a)

4.5 Bitwise Operators:
 A bitwise operation operates on one or more bit patterns at the level of individual

bits

Example: Let x = 10 (0000 1010 in binary) and
y = 4 (0000 0100 in binary)

Example Output

a = 60 # 60 = 0011 1100 Line 1 - Value of c is 12

b = 13 # 13 = 0000 1101 Line 2 - Value of c is 61

c = 0 Line 3 - Value of c is 49

c = a & b; # 12 = 0000 1100 Line 4 - Value of c is -61

print "Line 1 - Value of c is ", c Line 5 - Value of c is 240

c = a | b; # 61 = 0011 1101 Line 6 - Value of c is 15

print "Line 2 - Value of c is ", c

c = a ^ b; # 49 = 0011 0001

print "Line 3 - Value of c is ", c

c = ~a; # -61 = 1100 0011

17 Unit 2: Data ,expressions, Statements

print "Line 4 - Value of c is ", c

c = a << 2; # 240 = 1111 0000

print "Line 5 - Value of c is ", c

c = a >> 2; # 15 = 0000 1111

print "Line 6 - Value of c is ", c

4.6 Membership Operators:

 Evaluates to find a value or a variable is in the specified sequence of string, list,
tuple, dictionary or not.

 Let, x=[5,3,6,4,1]. To check particular item in list or not, in and not in operators
are used.

Example:

x=[5,3,6,4,1]

>>> 5 in x
True
>>> 5 not in x
False

4.7 Identity Operators:

 They are used to check if two values (or variables) are located on the same part
of the

memory.

Example

x = 5 Output

y = 5 False

x2 = 'Hello' True

y2 = 'Hello'
print(x1 is not y1)

print(x2 is y2)

18 Unit 2: Data ,expressions, Statements

5.OPERATOR PRECEDENCE:

When an expression contains more than one operator, the order of evaluation
depends on the order of operations.

 Operator Description

** Exponentiation (raise to the power)

~ + - Complement, unary plus and minus (method

 names for the last two are +@ and -@)

* / % // Multiply, divide, modulo and floor division

+ - Addition and subtraction

>> << Right and left bitwise shift

& Bitwise 'AND'

^ | Bitwise exclusive `OR' and regular `OR'

<= < > >= Comparison operators

<> == != Equality operators

= %= /= //= -= += *= **= Assignment operators

 is is not Identity operators

 in not in Membership operators

 not or and Logical operators

-For mathematical operators, Python follows mathematical convention.

-The acronym PEMDAS (Parentheses, Exponentiation, Multiplication, Division,
Addition, Subtraction) is a useful way to remember the rules:

 Parentheses have the highest precedence and can be used to force an expression
to evaluate in the order you want. Since expressions in parentheses are evaluated
first, 2 * (3-1)is 4, and (1+1)**(5-2) is 8.

 You can also use parentheses to make an expression easier to read, as in (minute

* 100) / 60, even if it doesn’t change the result.
 Exponentiation has the next highest precedence, so 1 + 2**3 is 9, not 27, and 2

*3**2 is 18, not 36.

 Multiplication and Division have higher precedence than Addition and
Subtraction. So 2*3-1 is 5, not 4, and 6+4/2 is 8, not 5.

 Operators with the same precedence are evaluated from left to right (except
exponentiation).

19 Unit 2: Data ,expressions, Statements

Example:

a=9-12/3+3*2-1 A=2*3+4%5-3/2+6

a=? A=6+4%5-3/2+6 find m=?

a=9-4+3*2-1 A=6+4-3/2+6 m=-43||8&&0||-2

a=9-4+6-1 A=6+4-1+6 m=-43||0||-2

a=5+6-1 A=10-1+6 m=1||-2

a=11-1 A=9+6 m=1

a=10 A=15

a=2,b=12,c=1 a=2*3+4%5-3//2+6

d=ac a=2,b=12,c=1 a=6+4-1+6

d=2<12>1 d=ac-1 a=10-1+6

d=1>1 d=2<12>1-1 a=15

d=0 d=2<12>0

 d=1>0

 d=1

6.Functions, Function Definition And Use, Function call, Flow Of Execution,

Function Prototypes, Parameters And Arguments, Return statement,
Argumentstypes,Modules

6.1 FUNCTIONS:

 Function is a sub program which consists of set of instructions used to
perform a specific task. A large program is divided into basic building
blocks called function.

Need For Function:

 When the program is too complex and large they are divided into parts. Each part
is separately coded and combined into single program. Each subprogram is called
as function.

 Debugging, Testing and maintenance becomes easy when the program is divided
into subprograms.

 Functions are used to avoid rewriting same code again and again in a program.
 Function provides code re-usability
 The length of the program is reduced.

Types of function:

Functions can be classified into two categories:

i) user defined function
ii) Built in function

i) Built in functions

 Built in functions are the functions that are already created and stored in python.

 These built in functions are always available for usage and accessed by a
programmer. It cannot be modified.

 Built in function Description

20 Unit 2: Data ,expressions, Statements

>>>max(3,4) # returns largest element

4

>>>min(3,4) # returns smallest element

3

>>>len("hello") #returns length of an object

5

>>>range(2,8,1) #returns range of given values

[2, 3, 4, 5, 6, 7]

>>>round(7.8) #returns rounded integer of the given number

8.0

>>>chr(5) #returns a character (a string) from an integer

\x05'

>>>float(5) #returns float number from string or integer

5.0

>>>int(5.0) # returns integer from string or float

5

>>>pow(3,5) #returns power of given number

243

>>>type(5.6) #returns data type of object to which it belongs

<type 'float'>

>>>t=tuple([4,6.0,7]) # to create tuple of items from list

(4, 6.0, 7)

>>>print("good morning") # displays the given object

Good morning

>>>input("enter name: ") # reads and returns the given string

enter name : George

ii)User Defined Functions:

 User defined functions are the functions that programmers create for their
requirement and use.

 These functions can then be combined to form module which can be used in
other programs by importing them.

 Advantages of user defined functions:

 Programmers working on large project can divide the workload by making
different functions.

 If repeated code occurs in a program, function can be used to include those
codes and execute when needed by calling that function.

6.2 Function definition: (Sub program)

 def keyword is used to define a function.

 Give the function name after def keyword followed by parentheses in which
arguments are given.

 End with colon (:)
 Inside the function add the program statements to be executed

 End with or without return statement

21 Unit 2: Data ,expressions, Statements

Syntax:

def fun_name(Parameter1,Parameter2…Parameter n):
statement1

statement2…

statement n

return[expression]

Example:

def my_add(a,b):
c=a+b

return c

6.3Function Calling: (Main Function)

 Once we have defined a function, we can call it from another function, program
or even the Python prompt.

 To call a function we simply type the function name with appropriate

arguments.
Example:

x=5

y=4

my_add(x,y)

6.4 Flow of Execution:

 The order in which statements are executed is called the flow of execution
 Execution always begins at the first statement of the program.

 Statements are executed one at a time, in order, from top to bottom.

 Function definitions do not alter the flow of execution of the program, but
remember that statements inside the function are not executed until the function
is called.

 Function calls are like a bypass in the flow of execution. Instead of going to the

next statement, the flow jumps to the first line of the called function, executes all
the statements there, and then comes back to pick up where it left off.

Note: When you read a program, don’t read from top to bottom. Instead, follow the
flow of execution. This means that you will read the def statements as you are scanning
from top to bottom, but you should skip the statements of the function definition until
you reach a point where that function is called.

6.5 Function Prototypes:

i. Function without arguments and without return type
ii. Function with arguments and without return type

iii. Function without arguments and with return type
iv. Function with arguments and with return type

22 Unit 2: Data ,expressions, Statements

i) Function without arguments and without return type

o In this type no argument is passed through the function call and no output
is return to main function

o The sub function will read the input values perform the operation and print
the result in the same block

ii) Function with arguments and without return type
o Arguments are passed through the function call but output is not return to

the main function
iii) Function without arguments and with return type

o In this type no argument is passed through the function call but output is
return to the main function.

iv) Function with arguments and with return type

o In this type arguments are passed through the function call and output is
return to the main function

 Without Return Type

Without argument With argument

def add(): def add(a,b):
a=int(input("enter a")) c=a+b

b=int(input("enter b")) print(c)

c=a+b a=int(input("enter a"))

print(c) b=int(input("enter b"))

add() add(a,b)

OUTPUT: OUTPUT:
enter a 5 enter a 5

enter b 10 enter b 10

15 15

 With return type

Without argument With argument

def add(): def add(a,b):
a=int(input("enter a")) c=a+b

b=int(input("enter b")) return c

c=a+b a=int(input("enter a"))

return c b=int(input("enter b"))

c=add() c=add(a,b)

print(c) print(c)

OUTPUT: OUTPUT:
enter a 5 enter a 5

enter b 10 enter b 10

15 15

23 Unit 2: Data ,expressions, Statements

6.6 Parameters And Arguments:

Parameters:

 Parameters are the value(s) provided in the parenthesis when we write function
header.

 These are the values required by function to work.
 If there is more than one value required, all of them will be listed in parameter

list separated by comma.
 Example: def my_add(a,b):

Arguments :

 Arguments are the value(s) provided in function call/invoke statement.
 List of arguments should be supplied in same way as parameters are listed.
 Bounding of parameters to arguments is done 1:1, and so there should be same

number and type of arguments as mentioned in parameter list.
 Example: my_add(x,y)

6.7 RETURN STATEMENT:

 The return statement is used to exit a function and go back to the place from
where it was called.

 If the return statement has no arguments, then it will not return any values. But
exits from function.

Syntax:

return[expression]

Example:

def my_add(a,b):
c=a+b

return c

x=5

y=4

print(my_add(x,y))

Output:

9

6.8 ARGUMENTS TYPES:

1. Required Arguments

2. Keyword Arguments

3. Default Arguments

4. Variable length Arguments

 Required Arguments: The number of arguments in the function call should

 match exactly with the function definition.

 def my_details(name, age):

 print("Name: ", name)

 print("Age ", age)

 return

 my_details("george",56)

24

Unit 2: Data ,expressions, Statements

Output:

Name: george

Age 56

 Keyword Arguments:

Python interpreter is able to use the keywords provided to match the values with
parameters even though if they are arranged in out of order.

def my_details(name, age):
print("Name: ", name)

print("Age ", age)

return

my_details(age=56,name="george")

Output:

Name: george

Age 56

 Default Arguments:
Assumes a default value if a value is not provided in the function call for that argument.

def my_details(name, age=40):
print("Name: ", name)

print("Age ", age)

return

my_details(name="george")

Output:

Name: george

Age 40

 Variable length Arguments

If we want to specify more arguments than specified while defining the function,
variable length arguments are used. It is denoted by * symbol before parameter.

def my_details(*name):
print(*name)

my_details("rajan","rahul","micheal",

ärjun")

Output:

rajan rahul micheal ärjun

6.9 MODULES:

 A module is a file containing Python definitions ,functions, statements and
instructions.

 Standard library of Python is extended as modules.

 To use these modules in a program, programmer needs to import the
module.

25 Unit 2: Data ,expressions, Statements

 Once we import a module, we can reference or use to any of its functions or
variables in our code.

o There is large number of standard modules also available in python.

o Standard modules can be imported the same way as we import our user-
defined modules.

o Every module contains many function.
o To access one of the function , you have to specify the name of the module and

the name of the function separated by dot . This format is called dot
notation.

Syntax:

import module_name

module_name.function_name(variable)

 Importing Builtin Module: Importing User Defined Module:

 import math import cal
 x=math.sqrt(25) x=cal.add(5,4)

 print(x) print(x)

Built-in python modules are,
1.math – mathematical functions:

some of the functions in math module is,
 math.ceil(x) - Return the ceiling of x, the smallest integer greater

26 Unit 2: Data ,expressions, Statements

than or equal to x

 math.floor(x) - Return the floor of x, the largest integer less than or
equal to x.

 math.factorial(x) -Return x factorial. math.gcd(x,y)- Return the
greatest common divisor of the integers a and b

 math.sqrt(x)- Return the square root of x
math.log(x)- return the natural logarithm of x
math.log10(x) – returns the base-10 logarithms
math.log2(x) - Return the base-2 logarithm of x.
math.sin(x) – returns sin of x radians

 math.cos(x)- returns cosine of x radians

 math.tan(x)-returns tangent of x radians math.pi - The
mathematical constant π = 3.141592 math.e – returns The
mathematical constant e = 2.718281

2 .random-Generate pseudo-random numbers
 random.randrange(stop)
 random.randrange(start, stop[, step])
 random.uniform(a, b)
 -Return a random floating point number

ILLUSTRATIVE PROGRAMS

 Program for SWAPPING(Exchanging)of Output

 values

 a = int(input("Enter a value ")) Enter a value 5

 b = int(input("Enter b value ")) Enter b value 8

 c = a a=8

 a = b b=5

 b = c

 print("a=",a,"b=",b,)

 Program to find distance between two Output

 points

 import math enter x1 7

 x1=int(input("enter x1")) enter y1 6

 y1=int(input("enter y1")) enter x2 5

 x2=int(input("enter x2")) enter y2 7

 y2=int(input("enter y2")) 2.5

 distance =math.sqrt((x2-x1)**2)+((y2-

 y1)**2)

 print(distance)

 Program to circulate n numbers Output:

 a=list(input("enter the list")) enter the list '1234'

27

Unit 2: Data ,expressions, Statements

https://docs.python.org/3/library/random.html#module-random

print(a) ['1', '2', '3', '4']

for i in range(1,len(a),1): ['2', '3', '4', '1']

print(a[i:]+a[:i]) ['3', '4', '1', '2']

 ['4', '1', '2', '3']

Part A:

1. What is interpreter?
2. What are the two modes of python?
3. List the features of python.
4. List the applications of python
5. List the difference between interactive and script mode
6. What is value in python?
7. What is identifier? and list the rules to name identifier.
8. What is keyword?
9. How to get data types in compile time and runtime?
10. What is indexing and types of indexing?
11. List out the operations on strings.
12. Explain slicing?
13. Explain below operations with the example

(i)Concatenation (ii)Repetition
14. Give the difference between list and tuple
15. Differentiate Membership and Identity operators.
16. Compose the importance of indentation in python.
17. Evaluate the expression and find the result

(a+b)*c/d

a+b*c/d

18. Write a python program to print ‘n’ numbers.
19. Define function and its uses
20. Give the various data types in Python
21. Assess a program to assign and access variables.
22. Select and assign how an input operation was done in python.
23. Discover the difference between logical and bitwise operator.
24. Give the reserved words in Python.
25. Give the operator precedence in python.
26. Define the scope and lifetime of a variable in python.
27. Point out the uses of default arguments in python
28. Generalize the uses of python module.
29. Demonstrate how a function calls another function. Justify your answer.
30. List the syntax for function call with and without arguments.
31. Define recursive function.
32. What are the two parts of function definition? give the syntax.
33. Point out the difference between recursive and iterative technique.
34. Give the syntax for variable length arguments.

28 Unit 2: Data ,expressions, Statements

Part B

1. Explain in detail about various data types in Python with an example?
2. Explain the different types of operators in python with an example.
3. Discuss the need and importance of function in python.
4. Explain in details about function prototypes in python.
5. Discuss about the various type of arguments in python.
6. Explain the flow of execution in user defined function with example.
7. Illustrate a program to display different data types using variables and literal constants.
8. Show how an input and output function is performed in python with an example.
9. Explain in detail about the various operators in python with suitable examples.
10. Discuss the difference between tuples and list
11. Discuss the various operation that can be performed on a tuple and Lists (minimum

5)with an example program
12. What is membership and identity operators.
13. Write a program to perform addition, subtraction, multiplication, integer division,

floor division and modulo division on two integer and float.
14. Write a program to convert degree Fahrenheit to Celsius
15. Discuss the need and importance of function in python.
16. Illustrate a program to exchange the value of two variables with temporary variables
17. Briefly discuss in detail about function prototyping in python. With suitable example

program
18. Analyze the difference between local and global variables.
19. Explain with an example program to circulate the values of n variables
20. Analyze with a program to find out the distance between two points using python.
21. Do the Case study and perform the following operation in tuples i) Maxima minima

iii)sum of two tuples iv) duplicate a tuple v)slicing operator vi) obtaining a list from a
tuple vii) Compare two tuples viii)printing two tuples of different data types

22. Write a program to find out the square root of two numbers.

 Basic python programs:

 Addition of two numbers Output

 a=eval(input(“enter first no”)) enter first no

 b=eval(input(“enter second no”)) 5

 c=a+b enter second no

 print(“the sum is “,c) 6

 the sum is 11

 Area of rectangle Output

 l=eval(input(“enter the length of rectangle”)) enter the length of rectangle 5

 b=eval(input(“enter the breath of rectangle”)) enter the breath of rectangle 6

 a=l*b 30

 print(a)

 Area & circumference of circle output

 r=eval(input(“enter the radius of circle”)) enter the radius of circle4

 a=3.14*r*r the area of circle 50.24

 c=2*3.14*r the circumference of circle

 print(“the area of circle”,a) 25.12

 print(“the circumference of circle”,c)

 Calculate simple interest Output

 p=eval(input(“enter principle amount”)) enter principle amount 5000

 n=eval(input(“enter no of years”)) enter no of years 4

 r=eval(input(“enter rate of interest”)) enter rate of interest6

 si=p*n*r/100 simple interest is 1200.0

 print(“simple interest is”,si)

 Calculate engineering cutoff Output

 p=eval(input(“enter physics marks”)) enter physics marks 100

 c=eval(input(“enter chemistry marks”)) enter chemistry marks 99

 m=eval(input(“enter maths marks”)) enter maths marks 96

 cutoff=(p/4+c/4+m/2) cutoff = 97.75

 print(“cutoff =”,cutoff)

 Check voting eligibility output

 age=eval(input(“enter ur age”)) Enter ur age

 If(age>=18): 19

 print(“eligible for voting”) Eligible for voting

 else:

 print(“not eligible for voting”)

 31

 Find greatest of three numbers output

 a=eval(input(“enter the value of a”)) enter the value of a 9

 b=eval(input(“enter the value of b”)) enter the value of a 1

 c=eval(input(“enter the value of c”)) enter the value of a 8

 if(a>b): the greatest no is 9

 if(a>c):

 print(“the greatest no is”,a)

 else:

 print(“the greatest no is”,c)

 else:

 if(b>c):

 print(“the greatest no is”,b)

 else:

 print(“the greatest no is”,c)

 Programs on for loop

 Print n natural numbers Output

 for i in range(1,5,1): 1 2 3 4

 print(i)

 Print n odd numbers Output

 for i in range(1,10,2):
1 3 5 7 9

 print(i)

 Print n even numbers Output

 for i in range(2,10,2):

2 4 6 8

 print(i)

 Print squares of numbers Output

 for i in range(1,5,1): 1 4 9 16

 print(i*i)

 Print squares of numbers Output

 for i in range(1,5,1): 1 8 27 64

 print(i*i*i)

 Programs on while loop

 32

 Print n natural numbers Output

 i=1 1

 while(i<=5): 2

 print(i) 3

 i=i+1 4

 5

 Print n odd numbers Output

 i=2 2

 while(i<=10): 4

 print(i) 6

 i=i+2 8

 10

 Print n even numbers Output

 i=1 1

 while(i<=10): 3

 print(i) 5

 i=i+2 7

 9

 Print n squares of numbers Output

 i=1 1

 while(i<=5): 4

 print(i*i) 9

 i=i+1 16

 25

 Print n cubes numbers Output

 i=1 1

 while(i<=3): 8

 print(i*i*i) 27

 i=i+1

 find sum of n numbers Output

 i=1 55

 sum=0

 while(i<=10):

 sum=sum+i

 i=i+1

 print(sum)

 33

 factorial of n numbers/product of n numbers Output

 i=1 3628800

 product=1

 while(i<=10):

 product=product*i

 i=i+1

 print(product)

 sum of n numbers Output

 def add(): enter a value

 a=eval(input(“enter a value”)) 6

 b=eval(input(“enter b value”)) enter b value

 c=a+b 4

 print(“the sum is”,c) the sum is 10

 add()

 area of rectangle using function Output

 def area(): enter the length of

 l=eval(input(“enter the length of rectangle”)) rectangle 20

 b=eval(input(“enter the breath of rectangle”)) enter the breath of

 a=l*b rectangle 5

 print(“the area of rectangle is”,a) the area of rectangle is

 area() 100

 swap two values of variables Output

 def swap(): enter a value3

 a=eval(input("enter a value")) enter b value5

 b=eval(input("enter b value")) a= 5 b= 3

 c=a

 a=b

 b=c

 print("a=",a,"b=",b)

 swap()

 34

 check the no divisible by 5 or not Output

 def div(): enter n value10

 n=eval(input("enter n value")) the number is divisible by

 if(n%5==0): 5

 print("the number is divisible by 5")

 else:

 print("the number not divisible by 5")

 div()

 find reminder and quotient of given no Output

 def reminder(): enter a 6

 a=eval(input("enter a")) enter b 3

 b=eval(input("enter b")) the reminder is 0

 R=a%b enter a 8

 print("the reminder is",R) enter b 4

 def quotient(): the reminder is 2.0

 a=eval(input("enter a"))

 b=eval(input("enter b"))

 Q=a/b

 print("the reminder is",Q)

 reminder()

 quotient()

 convert the temperature Output

 enter temperature in

 def ctof(): centigrade 37

 c=eval(input("enter temperature in centigrade")) the temperature in

 f=(1.8*c)+32 Fahrenheit is 98.6

 print("the temperature in Fahrenheit is",f) enter temp in Fahrenheit

 def ftoc(): 100

 f=eval(input("enter temp in Fahrenheit")) the temperature in

 c=(f-32)/1.8 centigrade is 37.77

 print("the temperature in centigrade is",c)

 ctof()

 ftoc()

 35

 program for basic calculator Output

 def add(): enter a value 10

 a=eval(input("enter a value")) enter b value 10

 b=eval(input("enter b value")) the sum is 20

 c=a+b enter a value 10

 print("the sum is",c) enter b value 10

 def sub(): the diff is 0

 a=eval(input("enter a value")) enter a value 10

 b=eval(input("enter b value")) enter b value 10

 c=a-b the mul is 100

 print("the diff is",c) enter a value 10

 def mul(): enter b value 10

 a=eval(input("enter a value")) the div is 1

 b=eval(input("enter b value"))

 c=a*b

 print("the mul is",c)

 def div():

 a=eval(input("enter a value"))

 b=eval(input("enter b value"))

 c=a/b

 print("the div is",c)

 add()

 sub()

 mul()

 div()

